
HLogEdu-Search
carlos@diei.udl.cat

jponfarreny@diei.udl.cat

How to display the list of algorithms and problems
$ hlogedu-search list

How to display algorithms and problems information
$ hlogedu-search infoa <algorithm>

$ hlogedu-search infop <problem>

How to execute a search
$ hlogedu-search run -a <algorithm> -p <problem>

How to limit the search depth
$ hlogedu-search run -a <algorithm> -p <problem> -md <max_depth>

How to specify a heuristic function
$ hlogedu-search run -a <algorithm> -p <problem> -hf <heuristic>

How can I load my own problems
You can manually specify the directory that contains your implemented problems using the com-
mand line option “-pd” or “--problems-dir” and then the desired action.

$ hlogedu-search -pd <path> [run/list/infoa/infop] …

Note: By default the tool looks for Python files “*.py” inside a subdirectory problems, in the current working directory.

How to convert the output into an image
Edulog-Search outputs the search tree using the graph description language “dot”1, this output can
be passed to any of the graphviz2 package tools to transform it into a PNG/SVG/PDF/PS/… file.
The tool that produces the best results out of the box is dot, and the operation can be simplified by
pipelining both programs:

$ hlogedu-search run -a <algorithm> -p <problem> … | dot -K dot
 -T <format> -o <output_file>

Note: Although graphviz tools can cope with thousands of nodes, not all the image viewers will be able to render the
generated images.

1 https://en.wikipedia.org/wiki/DOT_(graph_description_language)
2 http://www.graphviz.org/

mailto:carlos@diei.udl.cat
http://www.graphviz.org/
https://en.wikipedia.org/wiki/DOT_(graph_description_language)
mailto:jponfarreny@diei.udl.cat

Interpreting a search tree image
• Box/Square shaped nodes represent goal states.
• Oval/Circle shaped nodes represent non-goal states.
• Nodes highlighted in Green are those in the solution “path”.
• Nodes with a solid border are those that have been expanded during the search.
• Nodes with a dotted border are those that were in the fringe at the end of the search.
• Nodes with a dashed border are those extracted from the fringe but not expanded yet.
• Edge labels are composed by the action, with its parameters, and its associated cost.
• Each node contains a textual representation of the state plus any of the following costs.

◦ g(n): accumulated cost of the actions to reach the node.
◦ h(n): heuristic value of the node’s state.
◦ f(n): actual value used by the algorithm to the determine the extraction order. It depends

on the algorithm, but typical options are: g(n), h(n), g(n) + h(n) or path-max.
• Labels “e: 1”, “e: 2”, etc., on the top left corner of the nodes indicate the order in which the

nodes have been expanded.

The image on the right is the result of running the graph
version of the BFS algorithm on the Jars problem.

We can clearly see all the nodes of the explored search
space as well as the actions taken to transit from one to
another. In this case each node contains one state of the
problem and the accumulated cost of the actions [g(n)]
to reach that state. Notice that, since BFS does not use a
heuristic function h(n) and f(n) have been omitted.

If we look at the action label betweens two state nodes
edge, we can see that all of them have the string c1 at
the end, this is the cost of the action, i.e., if the action
cost had been 30 then the string at the end would be
c30.

The states and the actions that lead to the solution are
clearly identifiable and since the cost of the actions does
not decrease and the algorithm is BFS, the given solu-
tion is optimal.

Finally, a small appreciation. The final node in the
solution path has a dotted style, which means that it was
in the fringe when the solution was found, thereby we
can deduce that the “goal test” is performed when
generating the successors. In other algorithms the final
node may have a dashed style, which will mean that the
solution is found when extracting the node from the
fringe.

(0, 0)
g(n) = 0

e: 1

fill(1) c1 fill(0) c1

(0, 3)
g(n) = 1

e: 2

pour(1, 0) c1 fill(0) c1

(5, 0)
g(n) = 1

e: 3

pour(0, 1) c1

(2, 3)
g(n) = 2

e: 6

empty(1) c1

(2, 0)
g(n) = 3

e: 8

pour(0, 1) c1

(0, 2)
g(n) = 4

e: 10

fill(0) c1

(5, 2)
g(n) = 5

e: 12

pour(0, 1) c1

(4, 3)
g(n) = 6

(3, 0)
g(n) = 2

e: 4

fill(1) c1

(5, 3)
g(n) = 2

e: 5

(3, 3)
g(n) = 3

e: 7

pour(1, 0) c1

(5, 1)
g(n) = 4

e: 9

empty(0) c1

(0, 1)
g(n) = 5

e: 11

pour(1, 0) c1

(1, 0)
g(n) = 6

Quick-start example of a custom problem
Even though the tool is able to load Python 3 code, it must follow a couple of structural rules so that
it can be understood by the underlying execution engine. As a gentle introduction to some of the
components to implement custom problems, we will see the implementation of the Jars problem.

The first step is import classes and functions, provided by the tool, to create a new Python class for
our problem. This elements can be imported from hlogedu.search.problem and the basic
ones you’ll need are:

• Problem
• Heuristic
• DRange / DDRange

• DInterval / DDInterval
• Categorical
• action

Let us now define the initial structure of our Jars problem implementation.

from hlogedu.search.problem import action, Heuristic, Problem, DDRange

class JarsProblem(Problem):
 NAME = "Jars"

The first line imports all the structural elements that we will use to define the problem and then, we
define our problem class JarsProblem that inherits from Problem. By default the tool will use the
class name JarsProblem on the command line interface, to override this behavior use the NAME
variable.

In our implementation of the Jars problem we will have two jars with capacities 5 l and 3 l, we can
define this in the __init__ of our class, as follows.

def __init__(self):
 super().__init__()
 self.capacities = (5, 3)
 self.n_jars = len(self.capacities)

Now that we have our problem initialized we must implement three methods used by the execution
engine to start, end and validate the search states. These are, get_start_states, is_goal_states and
is_valid_state.

def get_start_states(self):
 return [(0,) * self.n_jars]

This function returns a list with all the initial states, in our case we have only one start state that we
represent with a tuple of integers, each integer represents how fill each jar is. In the code above we
return a list with a tuple of self.n_jars zeros.
Note: if self.n_jars is 4 we return the list [(0, 0, 0, 0)]

def is_goal_state(self, state):
 return state[0] == 4

This one, as its name indicates, tests whether or not the given state is the goal state and returns True
or False accordingly, in our case we consider as end any state that has 4 l in the first jar.

def is_valid_state(self, state):
 for i in range(self.n_jars):
 if not 0 <= state[0] <= self.capacities[0]:
 return False
 return True

Finally, this function tests if the provided state is valid. In our particular implementation it just tests
that each jar is in the range [0, max capacity]. Later, we will see that if the actions are sound, this
function can return True without evaluating the correctness of the state.

Now that we defined the basics of our problem, we can move to implementing the last piece, the ac-
tions. In this implementation we will have 3 actions: fill, empty and pour. The first two will
fill/empty the jar passed as parameter and the last one will pour the content of one jar into the other,
until either destination is full or the source is empty.

@action(DDRange(0, 'n_jars'), cost=1)
def fill(self, state, jar):
 if state[jar] == self.capacities[jar]:
 return None
 n_state = list(state)
 n_state[jar] = self.capacities[jar]
 return tuple(n_state)

@action(DDRange(0, 'n_jars'), cost=1)
def empty(self, state, jar):
 if state[jar] == 0:
 return None
 n_state = list(state)
 n_state[jar] = 0
 return tuple(n_state)

@action(DDRange(0, 'n_jars'), DDRange(0, 'n_jars'), cost=1)
def pour(self, state, jar_s, jar_d):
 cap_d = self.capacities[jar_d]
 if jar_s == jar_d or state[jar_s] == 0 or state[jar_d] == cap_d:
 return None
 to_pour = min(state[jar_s], cap_d – state[jar_d])
 n_state = list(state)
 n_state[jar_s] -= to_pour
 n_state[jar_d] += to_pour
 return tuple(n_state)

As you can appreciate in the methods above, all of them are decorated with @action, the first pa-
rameter of each function (ignoring the standard self) is the state to which the action is applied and
all return new states. In addition to the state, each action can have as many parameters as necessary
and their possible values must be specified in the @action decorator. In this example, all parameters
represent jar indexes (the jar to fill/empty or source and destination jar when pouring) and their val-
ues are in the range [0, num. Jars].

The tool offers three different types to define the values of the action parameters, ranges, intervals
and list of categorical values. The types that implement them are DRange/DDRange,
DInterval/DDInterval and Categorical. In the example above, the parameters are represented with
DDRanges, which start at 0 and end at n_jars, notice that the text n_jars matches the variable
name self.n_jars. This is not accidental, DDRange and DDInterval replace the textual value with
the value of a variable with the same name defined in self.

The last, non-mandatory, parameter of the @action decorator is the cost of the action, in our exam-
ple we consider this cost to be always 1 for all the actions. Nonetheless, in some situations the cost
of an action is affected by the state or its parameters, if this happens, the cost parameter have to be
omitted and instead of just returning a new state, the method that implements the action must return
a tuple (cost, new state).

jars.py

-*- coding: utf-8 -*-

from hlogedu.search.problem import action, Heuristic, Problem, DDRange

class JarsProblem(Problem):
 """Jars problem
 This class implements the Jars problem. In this problem
 we have two or more jars with different capacities. At
 the beginning each jar is empty and the objective is to
 have a desired amount of liquid in one of them.
 The possible actions are:
 - fill one jar to its maximum capacity
 - empty one jar
 - pour from one jar into another, until the first is
 empty or the latter is full.
 """
 NAME = "Jars"

 def __init__(self):
 super().__init__()
 self.capacities = (5, 3)
 self.n_jars = len(self.capacities)

 def get_start_states(self):
 return [(0,) * self.n_jars]

 def is_goal_state(self, state):
 return state[0] == 4

 def is_valid_state(self, state):
 for i in range(self.n_jars):
 if not 0 <= state[0] <= self.capacities[0]:
 return False
 return True

 @action(DDRange(0, 'n_jars'), cost=1)
 def fill(self, state, jar):
 if state[jar] == self.capacities[jar]:
 return None
 n_state = list(state)
 n_state[jar] = self.capacities[jar]
 return tuple(n_state)

 @action(DDRange(0, 'n_jars'), cost=1)
 def empty(self, state, jar):
 if state[jar] == 0:
 return None
 n_state = list(state)
 n_state[jar] = 0
 return tuple(n_state)

 @action(DDRange(0, 'n_jars'), DDRange(0, 'n_jars'), cost=1)
 def pour(self, state, jar_s, jar_d):
 cap_d = self.capacities[jar_d]
 if jar_s == jar_d or state[jar_s] == 0 or state[jar_d] == cap_d:
 return None
 to_pour = min(state[jar_s], cap_d - state[jar_d])
 n_state = list(state)
 n_state[jar_s] -= to_pour
 n_state[jar_d] += to_pour
 return tuple(n_state)

Actions
As seen in the previous example, actions are just Python methods that receive a state as the first pa -
rameter, ignoring the Python self idiom, decorated with @action, and return a new state or None if
the action does not apply. This decorator helps the tool identify the actions and contains meta-infor-
mation necessary to properly execute the search procedure. The most important meta-information
are the possible values of any parameter that comes after the state, in the previous example we have
seen some actions that require the index of the Jar to operate, but actions are not restricted to work
with integer ranges. The next section will present the supported parameter types.

Another meta-information associated with an action is its cost, in the example above we see the cost
specified at the end of the decorator via the cost keyword, but this is optional. In reality an action
must return a pair where the first element is the cost and the second the new state. The thing is,
many actions have constant cost and the @action decorator let us hide this implementation detail if
the cost keyword is provided. Let us rewrite the fill action from the Jars example without the
cost keyword:

@action(DDRange(0, 'n_jars'))
def fill(self, state, jar):
 if state[jar] == self.capacities[jar]:
 return None
 n_state = list(state)
 n_state[jar] = self.capacities[jar]
 return 1, tuple(n_state)

More action parameter types
In the previous example we have seen actions with parameters that can be defined using DDRange.
For other problems different parameters or combinations of them may be necessary, to cover
different situations the tool provides the following types:

• DRange(stop: int) or DRange(start: int, stop: int)

This kind of range mimics the built-in Python range function and it can be constructed
with one or two integers. The version with one integer starts at 0 and ends at stop-1 and
the version with two integers starts at start and ends at stop-1. A parameter with this type
will take values in the range [start, stop)

• DDRange(stop: int/str) or DDRange(start: int/str, stop: int/str)

Basically the same as DRange but, in addition to integers it lets start and stop take tex-
tual values, like 'n_jars', which will be replaced by the value of the variable with the
same name defined in the problem instance, i.e., self.

• DInterval(stop: int) or DInterval(start: int, stop: int)

Like a DRange but it defines the range [start, stop]

• DDInterval(stop: int/str) or DDInterval(start: int/str, stop: int/str)

A DInterval with the same support for textual values that has DDRange.

• Categorical(values: Iterable)

A list of values with no specific order, as an example, a parameter that takes temperature
values as 'freezing', 'cold', 'mild' and 'hot', can be defined as:

Categorical(['freezing', 'cold', 'mild', 'hot'])

Built-in algorithms
To perform the search on any given problem, this tool comes with some built-in, blind and
informed, search algorithms. Additionally, all the algorithms are implemented following two
schemes: graph and tree search. The name used in the command-line interface to refer to them
makes it clear which algorithm and scheme the different implementations refer to.

• graph-bfs
• tree-bfs

• graph-dfs
• tree-dfs

• graph-ucs
• tree-ucs

• graph-best-h
• tree-best-h

• graph-astar
• tree-astar

Two important aspects of these implementations are, the goal test position within the algorithm and
the order in which the nodes are extracted form the fringe.

• In all the built-in algorithms, the goal test is performed when generating the successors on
the blind search algorithms, and after extracting the node from the fringe on the informed
search algorithms.

• In all the built-in algorithms, nodes are extracted from the fringe in lexicographical order.
Bear in mind, this lexicographical order is affected by the state representation and can be
modified by overriding the Python operators “<”, “<=”, “>”, “>=” and “==”.

	How to display the list of algorithms and problems
	How to display algorithms and problems information
	How to execute a search
	How to limit the search depth
	How to specify a heuristic function
	How can I load my own problems
	How to convert the output into an image
	Interpreting a search tree image
	Quick-start example of a custom problem
	Actions
	More action parameter types

	Built-in algorithms

